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Combinatorial intuitions



Hypercubes
The n-dimensional hypercube Qn is defined recursively in terms of
Cartesian product of two graphs: 1

Q1 = K2,

Qn = K2 × Qn−1.

I Vertex: 2n n-dim boolean vectors;
I Edges: Two vertices are adjacent whenever they differ in exactly one

coordinate.

1F. Harary, J. P. Hayes and H.-J. Wu, A survey of the theory of hypercube graphs,
Comput. Math. Appl. vol. 15, no. 4, 277-289, 1988
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Analogies between Spheres and Hypercubes

I Every point has an antipodal point.
I For every two distinct x , y , all the geodesics connecting x , y run over

a (low-dim) hypercube.
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More candidates?

I For every x , we can find a x̄ such that [x , x̄ ] = V (antipodal). 2

I For every pair x , y ∈ V , x 6= y , [x , y ] is again antipodal.3

2The interval between x and y is the subset of V given by

[x , y ] = {z ∈ V : d(x , y) = d(x , z) + d(z, y)}.

3For simplicity, we also use [x , y ] for the subgraph induced by the interval.
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Spherical graphs

Spherical graphs were introduced by Berrachedi, Havel, Mulder in 20034

and represent an interesting generalization of hypercubes.

I We call a connected graph G = (V ,E ) antipodal if for every vertex
x ∈ V there exists some vertex y ∈ V with [x , y ] = V .

I We call a connected graph G = (V ,E ) spherical if each of its
interval is antipodal.

I We call a connected graph G = (V ,E ) strongly spherical if it is both
antipodal and spherical.

4A. Berrachedi, I. Havel, H.M. Mulder, Spherical and clockwise spherical graphs,
Czechoslovak Math. J. 53 (2) (2003) 295-309.
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More Examples

I Cocktail party graphs CP(n) obtained by removal of a perfect
matching from the complete graph K2n;

CP(3)!!

I Johnson graphs J(2n, n) with vertices corresponding to n-subsets of
{1, 2, · · · , 2n} and edges between them if they overlap in n − 1
elements;

J(4, 2)!!

I Even-dimensional demi-cubes Q2n
(2) : one of the two isomorphic

connected components of the vertex set {0, 1}2n and edges between
them if Hamming distance equals two;

Q4
(2)!!
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Classification of strongly spherical graphs

Theorem (Koolen-Moulton-Stevanović 2004)
Strongly spherical graphs are precisely the Cartesian products

G1 × G2 × · · · × Gk ,

where each factor Gi is either
I a hypercube
I a cocktail party graph
I a Johnson graph J(2n, n)

I an even dimensional demi-cube
I or the Gosset graph. 5

5A Gosset graph has 56 vertices:
I the vertices are in one-one correspondence with the edges {i , j} and {i , j}′

of two disjoint copies of K8, respectively.
I {i , j} ∼ {k, l} if |{i , j} ∩ {k, l}| = 1 and {i , j} ∼ {k, l}′ if
{i , j} ∩ {k, l} = ∅.



Gosset graph

By Claudio Rocchini - Own work, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=2200120



A characterization of spheres in Riemannian
geometry



Bonnet-Myers and Cheng Theorems

Theorem (Bonnet 1855; Myers 1941 Duke Math. J.)
Let (M, g) be a complete Riemannian manifold with Ric ≥ (n − 1)k.
Then we have M is compact and

diam(M, g) ≤ π√
k
.

Theorem (Cheng 1975)
Let (M, g) be a complete Riemannian manifold with Ric ≥ (n − 1)k.
Then we have

diam(M, g) =
π√
k

if and only if M is the sphere Sn( 1√
k ).



Lichnerowicz and Obata Theorems

Theorem (Lichnerowicz 1958)
Let (M, g) be a complete Riemannian manifold with Ric ≥ (n − 1)k.
Then we have the smallest positive Laplace-Beltrami eigenvalue satisfies

λ1(M, g) ≥ nk.

Theorem (Obata 1962)
Let (M, g) be a complete Riemannian manifold with Ric ≥ (n − 1)k.
Then we have

λ1(M, g) = nk

if and only if M is the sphere Sn( 1√
k ).



Question: Discrete Analogues?



Discrete setting

I G = (V ,E ): V is a countable set.
I Locally finite: Deg(x) := ]{y ∈ V |y ∼ x} <∞,∀x ∈ V
I For any f : V → R, x ∈ V , consider the Laplacian ∆:

∆f (x) :=
1

Deg(x)

∑
y ,y∼x

(f (y)− f (x)).



Ollivier-Ricci curvature

Ollivier-Ricci curvature κ(x , y) is a notion based on optimal transport
and is defined on pairs of different vertices x , y ∈ V .

Intuition: κ(x , y) > 0 if the average distance between corresponding
neighbours of x and y is smaller than d(x , y).

We represent the neighbours of x by the following probability measures
µp

x for any x ∈ V , p ∈ [0, 1]:

µp
x (z) =


p if z = x ,

1−p
Deg(x) if z ∼ x ,
0 otherwise.



Ollivier-Ricci curvature

Ollivier-Ricci curvature κ(x , y) is a notion based on optimal transport
and is defined on pairs of different vertices x , y ∈ V .

Intuition: κ(x , y) > 0 if the average distance between corresponding
neighbours of x and y is smaller than d(x , y).

We represent the neighbours of x by the following probability measures
µp

x for any x ∈ V , p ∈ [0, 1]:

µp
x (z) =


p if z = x ,

1−p
Deg(x) if z ∼ x ,
0 otherwise.



Wasserstein distance

Definition
Let G = (V ,E ) be a graph. Let µ1, µ2 be two probability measures on
V . The Wasserstein distance W1(µ1, µ2) between µ1 and µ2 is defined as

W1(µ1, µ2) := inf
π∈Π(µ1,µ2)

∑
x∈V

∑
y∈V

d(x , y)π(x , y),

where π runs over all transport plans in

Π(µ1, µ2) =

π : V × V → [0, 1] : µ1(x) =
∑
y∈V

π(x , y), µ2(y) =
∑
x∈V

π(x , y)

 .



Ollivier-Ricci curvature

Definition (Ollivier 2009)
Let p ∈ [0, 1]. The p-Ollivier Ricci curvature between two different
vertices x , y ∈ V is

κp(x , y) = 1−
W1(µp

x , µ
p
y )

d(x , y)
,

where p is called the idleness.

Definition (Lin-Lu-Yau 2011)
The Lin-Lu-Yau curvature between two neighboring vertices x ∼ y is

κ(x , y) := κLLY (x , y) = lim
p→1

κp(x , y)

1− p .
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Discrete Bonnet-Myers theorem

Theorem (Ollivier ’09, Lin-Lu-Yau ’11)
Let G = (V ,E ) be a connected graph and infx∼y κ(x , y) > 0. Then G
has finite diameter L := diam(G) <∞ and

inf
x∼y

κ(x , y) ≤ 2
L .

Natural to classify the cases when equality holds. We restrict ourselves to
regular graphs.

We say that a D-regular graph G with diameter L is
(D, L)-Bonnet-Myers sharp if the inequality holds with equality.



Discrete Bonnet-Myers theorem

Theorem (Ollivier ’09, Lin-Lu-Yau ’11)
Let G = (V ,E ) be a connected graph and infx∼y κ(x , y) > 0. Then G
has finite diameter L := diam(G) <∞ and

inf
x∼y

κ(x , y) ≤ 2
L .

Natural to classify the cases when equality holds. We restrict ourselves to
regular graphs.

We say that a D-regular graph G with diameter L is
(D, L)-Bonnet-Myers sharp if the inequality holds with equality.



Discrete Bonnet-Myers theorem

Theorem (Ollivier ’09, Lin-Lu-Yau ’11)
Let G = (V ,E ) be a connected graph and infx∼y κ(x , y) > 0. Then G
has finite diameter L := diam(G) <∞ and

inf
x∼y

κ(x , y) ≤ 2
L .

Natural to classify the cases when equality holds. We restrict ourselves to
regular graphs.

We say that a D-regular graph G with diameter L is
(D, L)-Bonnet-Myers sharp if the inequality holds with equality.



Discrete Lichnerowicz theorem

Theorem (Ollivier ’09, Lin-Lu-Yau ’11)
Let G = (V ,E ) be a finite connected graph. Then we have for the
smallest positive solution λ1 of ∆f + λ1f = 0

inf
x∼y

κ(x , y) ≤ λ1.

Natural to classify the cases when equality holds. We restrict ourselves to
regular graphs.

We say that a D-regular graph G Lichnerowicz sharp if the inequality
holds with equality.
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Relations between these two classes of graphs

Theorem (Cushing-Kamtue-Koolen-L.-Münch-Peyerimhoff)
Any Bonnet-Myers sharp graph is Lichnerowicz sharp.



Basic Properties

Theorem (Cushing-Kamtue-Koolen-L.-Münch-Peyerimhoff)
Any (D, L)-Bonnet-Myers sharp graph satisfies L ≤ D. Moreover L must
divide 2D.

Theorem (CKKLMP)
G1 × G2 × · · · × Gk is Bonnet-Myers sharp if and only if all factors Gi are
Bonnet-Myers sharp and satisfy

D1
L1

=
D2
L2

= · · · =
Dk
Lk
.



Basic Properties

Theorem (Cushing-Kamtue-Koolen-L.-Münch-Peyerimhoff)
Any (D, L)-Bonnet-Myers sharp graph satisfies L ≤ D. Moreover L must
divide 2D.

Theorem (CKKLMP)
G1 × G2 × · · · × Gk is Bonnet-Myers sharp if and only if all factors Gi are
Bonnet-Myers sharp and satisfy

D1
L1

=
D2
L2

= · · · =
Dk
Lk
.



Discrete Cheng Theorem

We can classify all self-centered6 Bonnet-Myers sharp graphs:

Theorem (CKKLMP)
Self-centered Bonnet-Myers sharp graphs are precisely the following
graphs:
1. hypercubes Qn

2. cocktail party graphs CP(n)

3. the Johnson graphs J(2n, n)

4. even-dimensional demi-cubes Q2n
(2)

5. the Gosset graph
and Cartesian products of 1.-5. satisfying the condition Di/Li = const.

In fact, we show that every self-centered Bonnet-Myers sharp graph is
strongly spherical!!

6a graph G = (V , E) is called self-centered if, for every vertex x ∈ V , there exists a
vertex x ∈ V such that d(x , x) = diam(G).
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A combinatorial description

Definition
Let G = (V ,E ) be a regular graph. We say G satisfies Λ(m) at an edge
e = {x , y} ∈ E if the following holds:
(i) e is contained in at least m triangles;
(ii) there is a perfect matching between the neighbours of x and the

neighbours of y no involved in these triangles.

Theorem (CKKLMP)
Let G be a D-regular finite connected graph of diameter L. The following
are equivalent

I G is self-centered Bonnet-Myers sharp.
I G is self-centered and satisfies Λ( 2D

L − 2).
Moreover, if any of these equivalent properties holds, then every edge of
G lies in precisely 2D

L − 2 triangles.
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A combinatorial description

Theorem (CKKLMP)
Let G be a D-regular finite connected graph of diameter L. Assume that
G is self-centered and satisfies Λ( 2D

L − 2). Then G is strongly spherical.
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I Full-length geodesic: x0 − x1 − x2 − x3

I Transport geodesic: 000− 000− 001− 101
I [x0, x2] = [x1, 001] and [x0, x3] = [x1, 101]



Thank you for your attention!


